

SurfaceNet: Adversarial SVBRDF Estimation from a Single Image

giuseppe.vecchio@phd.unict.it, {simone.palazzo, concetto.spampinato}@unict.it

Method

Giuseppe Vecchio, Simone Palazzo,

Concetto Spampinato

CAN ME

Motivation

SVBRDF estimation is crucial for correctly reproducing real-world materials in a virtual environment.

The problem can be posed as a domain translation task where a network learns to ma an input image to a set of SVBRDF.

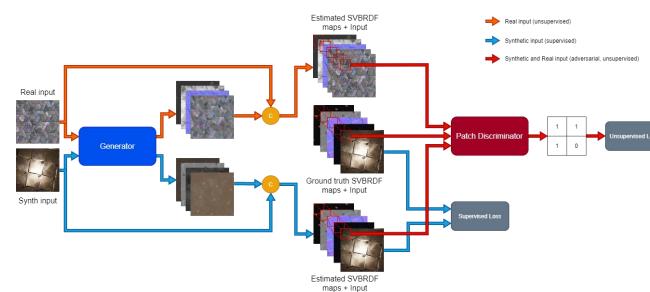
Key ideas

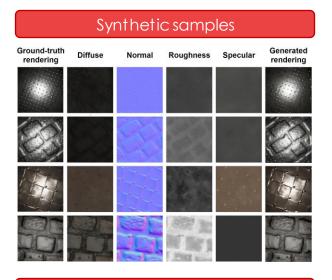
- Encoder-decoder network with atrous convolutions to learn long-distance dependencies.
- L_1 + MS-SSIM loss to reconstruct low-frequency details.
- Patch discriminator to reconstruct high-frequency details.
- Unsupervised learning for unannotated real-world samples.
- Domain shift reduction between synthetic and real data.

Somereferences

[1] Deschaintre et al., "Single-image svbrdf capture with a rendering-aw are deep netw ork", Siggraph 2018

[2] Gao et al., "Deep inverse rendering for high-resolution SVBRDF estimation from an arbitrary number of images", ACM TOG 2019
[3] Deschaintre et al., "Flexible SVBRDF Capture with a Multi-Image Deep Netw ork", EGSR 2019





Results

Pool	Lamo	
Kea	lsamp	e

Input picture	Diffuse	Normal	Roughness	Specular	Generated rendering
			and the second		
		5	a long		

h h computed only for synthetic samples. $\mathcal{L}_{sup} = L_1 + MS-SSIM$ computed only for both synthetic and real samples.

 $\overline{}$

Computed only for both synthetic and real samples. $\mathcal{L}_{unsup} = \mathcal{L}_{gen} + \mathcal{L}_{discr}$	Generatio	SurfaceNet	0.017	0.030
		Gao 2019	0.050	0062
		Deschaintre 2019	0.081	0.057
$\mathcal{L}_{sup} = L_1 + MS\text{-}SSIM$	ion Qua	Deschaintre 2018	0.019	0.035

Method

ality

Diff.

Nrm.

Real images, with natural illumination (RMSE)

Rgh.

0.129

0.108

0.119

0.029

Spec.

0.50

0.063

0.202

0.014

Rend.

0.083

0.187

0.108

0.058